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values are in general still larger than the standard 
deviations expected for accurate structure determina- 
tions at low temperatures [for an example, see Ver- 
schoor & Keulen, 1971; a (C)=  0.0007 A]. For the HO 
refinements, on the other hand, the systematic errors 
are smaller than the standard deviations obtainable for 
accurate experimental studies [for B(H) only iff(SDS) 
is applied]. Our findings agree with the observation 
that differences between structural parameters ob- 
tained by X-ray and neutron diffraction decrease when 
a higher proportion of high-order X-ray reflexions is 
included in the X-ray refinement (Coppens & Vos, 
1971). 

It is easy to see that a change in the isotropic overall 
temperature factor from exp ( -  1.07 sin z 0/22) to 
exp ( - B s i n  z 0/22) corresponds to a change in the 
least-squares weighting scheme from the adopted w-- 1 
to w=exp [ - 2 ( B -  1.07) sin z O/2Z]. For increasing B 
values the weight~ of the high-order reflexions decrease, 
so that the shifts of an FA refinement will approach 
those of an LO refinement. For B=2.12 A 2 the FA 
refinement gives, for instance, Az(C) = - 0.0081 A. 

Discussion 

The study in the previous sections has shown that the 
reduction in height of the bonding maxima as ob- 
served for curve b in Fig. 3, is mainly due to errors in 
the atomic parameters rather than to series termina- 
tion effects. To obtain reliable parameters HO refine- 
ments are necessary. This implies that accurately meas- 
ured high-order reflexions as well as low-order refex- 
ions must be available to obtain reliable difference den- 

sities by X-ray diffraction alone. The intensity meas- 
urements should therefore be done at low temperatures 
(preferably 'He temperatures') to reduce the thermal 
motion of the molecules as much as possible. 

As an alternative, one can use neutron diffraction in 
addition to X-ray diffraction for the accurate deter- 
mination of the parameters. If this has been achieved, 
a difference synthesis calculated with X-ray diffraction 
reflexions up to H _  ~ 1.3 A -1 is expected to give a good 
picture of the bonding effects, except for regions close 
to the atomic nuclei. 

The authors thank Professor E. H. Wiebenga for 
stimulating discussions. The research has been sup- 
ported by the Dutch Organization for the Advance- 
ment of Pure Research (ZWO). The computations 
were done at the Computing Centre of the University 
of Groningen. 

References 

COPPENS, P. (1971). Acta Cryst. B27, 1931-1938. 
COPPENS, P. & VOS, A. (1971). Acta Cryst. B27, 146-158. 
HELMHOLDT, R. B., RUYSINK, A. F. J., REYNAERS, H. & 

KEMPER, G. (1972). Acta Cryst. B28, 318-319. 
RUYSINK, A. F. J. & VOS, A. (1974a). Acta Cryst. B30. In the 

press. 
RUYStNK, A. F. J. & VOS, A. (1974b). Acta Cryst. A30, 497- 

502. 
STEWART, R. F., DAVIDSON, E. R. & SIMPSON, W. Z. (1965). 

J. Chem. Phys. 42, 3175-3187. 
SUGAWARA, I. T. • KANDA, E. (1952). Structure Reports, 

16, 411. 
VERSCHOOR, G. C. & KEULEN, E. (1971). Acta Cryst. B27, 

134-145. 

Acta Cryst. (1974). A30, 506 

The Anomaly of the X-ray Debye Temperature of Chromium in the Temperature Range 35-51°C 
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The integrated intensities of the 550 and 651 diffraction lines from a chremium single crystal were 
measured in the temperature range 35-51 °C by steps of 2°C. A plot of the intensities of these lines 
versus temperature showed an abrupt change between 43 and 45°C corresponding to a discontinuity 
of about (3.6 + 1.1)°C for the Debye characteristic temperature. This value is in good agreement with 
the one calculated from the discontinuity of the elastic constants. 

Introduction 

Chromium, which is antiferromagnetic, has kept the 
interest of many investigators because of its anomalous 
properties near the N6el temperature. They were con- 
cerned mainly with the specific heat (Beaumont, Chi- 

hara & Morrison, 1960), and the elastic constants 
(Bolef & De Klerk, 1963; Roberson & Lipsitt, 1965; 
Palmer & Lee, 1971). Similar anomalies were expected 
in the X-ray Debye temperature. Calculations from 
elastic constants lead to a discontinuity of 3 °C (Wilson, 
Skelton & Katz, 1966). However, the existence of such 
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Fig. 1. The heating chamber with the goniometer head. 
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Fig. 2. The 550 line at 35°C. The statistical error is too small 
to be shown. 
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Fig. 3. The integrated intensity of the 550 line versus temper- 
ature 

a small discontinuity could not be established from the 
measurements carried out by Wilson et al. in the tem- 
perature range 100-520 °K. 

Koumelis (1971), working with X-rays on a 400 mesh 
powder sample, detected between 37 and 40°C a dis- 
continuity in the Debye temperature of about 7.9 + 
0.8C °. In the present experiment, the integrated inten- 
sities of the 550 and 651 diffraction lines from a single 
crystal were measured in the temperature range 35- 
51 °C by steps of 2°C. The 550 and 651 lines and Mo K~ 
radiation were chosen because they give large sin 0/2. 

Experimental details 

The sample used was a 4N5 purity chromium single 
crystal in the form of a cylinder with 8 mm diameter 
and 4ram height obtained from Metal Research Ltd,. 
Melbourne, England. The axis of the cylinder was [110]. 
Before use, the base was polished and etched. The 
sample S was fixed in a small double-walled chamber 
Ch (Fig. 1). Water from a thermostat circulated through 
the hollow walls and base. The temperature in the in- 
terior of the chamber measured by the thermometer 
Th could be kept constant within better than 0.I °C. 
A 40/~m aluminum window allowed the passage of the 
incident and diffracted beams. The chamber was fixed 
on a goniometric head GH and regulated so as to bring 
[1TT] in coincidence with the goniometer axis XX', and 
consequently the [550] and [651] directions on the 
meridian of the goniometer. An extension of this axis 
was fitted into a modified Philips diffractometer. 

Fig. 2 shows the 550 line of chromium at 35 °C taken 
with Mo K~ radiation. The integrated intensity for each 
line and for each temperature was measured as follows" 
The line was scanned automatically from the position 
A to the position B ten times (0, 20 scanning), and the 
total counts N and time t were registered. Afterwards, 
the counter was left for 103 s in the position A and the 
rate nA of the counts was found; the same procedure 
was used for the position B. The integrated intensity 
J for the line was then" 

J = N -  hA+riB, t.  
2 

Ten independent series of measurements were taken 
for each line and temperature. 

Calculations and results 

The integrated intensity of a diffraction line is given by: 

J = C  exp [-2M(T,O)] (1) 

(James, 1958), where C is a factor which in this experi- 
ment can be considered as constant for each line, and 
2M is the Debye-Waller factor with the usual notation" 

12h, [s, o]2 4] 
2 M -  m~k 
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In this last equation we have: 

0 hv 1 f x ~d~ 
x = ~  ~= k-T ¢(x)= x~0 e ~ - 1 "  

Differentiating (1) with respect to O we obtain: 

J m,,k exp ( O / T ) -  1 

3T  2 IOn/r ~d~ ] d O  
+ O2 __ e¢, fl N2-. (2) 

This formula relates the change dJ  with dO for a given 
temperature T. As the thermal diffuse scattering (TDS) 
is contained in the measured integrated intensities, we 
write: 

Jmeas = Jq- JTDS" 
If we put" 

we will have" 
JTDS ~ o c J  

J m e a s = J ( l + 0 0 .  (3) 

The factor a is equal to: 

8 n k T  
c~- 32 a sin a 0 cos OAOlz (4) 

(Nilsson, 1957), where AO is the angular length of the 
background and/z is a function (Schwartz, 1964) of the 
elastic constants c u: 

The values of cn, c12 and C44 were obtained from Pal- 
mer & Lee (1971). 

Figs. 3 and 4 show the measured intensities of the 
550 and 651 lines versus temperature. As the intensity 
is approximately a linear function of the temperature, 
we drew straight lines through the measured points. 
The lines were plotted by the least-squares method. It 
is evident that a discontinuity exists in the lines between 
43 and 45 °C. From the least-squares method we obtain 
dJmeas/Jmeas and using (2) we find before correction for 
TDS" 

A Osso = 4"2 + 0"8 ° C  

AO651 = 2.6 + 1-4°C. 

Considering the values as equally probable, we write: 

AO=3.4_+ 1.1 °C. 

Using (6) to correct for TDS we find: 

AO=3.6_+ 1-1 °C. 

This value is in good agreement with the one calculated 
from the discontinuity of the elastic constants (Wilson 
et al., 1966). The present value is smaller than the value 
found for the powder (Koumelis, 1971), and is con- 
sidered more reliable, because the powdered sample 
was made by grinding granular polycrystalline material 
which probably causes plastic deformation. 

21(cn + c12) (cn - c~2- 2C44) -a t- 1 05e44(2C11 -Jr- C44) 

/'/= (ell-- C12-- 2C44) [(C11-- C12-- 2C44) (ell "JI- 2Ct2 + C44) ~- 21 e44(Cl1 q- C12)] ~ I- 105C11C424 " 

Writing for (4): 
~=A/~ 

and differentiating (3) we have: 

dJmeas Adfl dJ  
- + ( 5 )  

Jmeas 1 + A/z J 

If we accept equality between the velocity of the long- 
itudinal and transverse waves, the Debye frequency Vo 
will be proportional to this common velocity, and hence 
v g will be a linear function of the c u. 

We then put approximately: 

0 2 = Be u 

where B is a constant. Differentiating this last equation 
we have: 

and 

dc u = 2c u dO 
O 

d/t = - 2/z d O 
O " 

Substituting in (5) we find: 

dJmeas 2A/z dO 
Jmeas 1 + A O  O 

dJ  
J r  ........ • 

J 

The position of the anomaly, i.e. between 43 and 
45 °C, is in agreement with a previous experiment on the 
same crystal (Koumelis, 1973) according to which the 
N6el temperature was found at 43.3 °C. 

The authors would like to thank Dr. S. Mourikis for 
helpful discussions• 
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X-ray Diffraction from Close-Packed Structures with Stacking Faults. I. hcc Crystals 
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The kinematical theory of X-ray diffraction by hcc crystals with growth and deformation faults is 
developed. The intensity distribution in reciprocal space is derived as a function of five parameters 
which represent three growth and two deformation fault probabilities. Only reflexions with H -  K¢  3N, 
N an integer, are affected by faulting and generally exhibit changes in integrated intensity and broaden- 
ing. In addition, reflexions with L= 6M+ 1 and 6M+ 2, M an integer, exhibit profile peak shift and 
profile asymmetry. It is shown that nine independent combinations of the five fault probabilities can 
be determined from the measured profile characteristics. 

Introduction 

X-ray diffraction from faulted close-packed crystals 
with a range of influence equal to 2, i.e., h and c crys- 
tals [Jagodzinski (1949a) configurational symbols for 
h.c.p, and f.c.c, crystals respectively] has been con- 
sidered by several authors. Wilson (1942) and Henri- 
ricks & Teller (1942) considered the case of growth 
faults while Patterson (1952) and Christian (1954) have 
considered deformation faults. (A growth fault arises 
when during the layer-by-layer growth of a crystal, the 
stacking rule is not obeyed in adding one new layer, but 
is otherwise obeyed throughout the crystal, while a de- 
formation fault arises through the process of glide of 
one part of the crystal with respect to the remainder.) 
A general treatment for h and c crystals containing 
growth and deformation faults simultaneously has 
been given by Gevers (1954). Effects of extrinsic faults 
for h and c crystals have been found by Lele, Anan- 
tharaman & Johnson (1967) and Johnson (1963) re- 
spectively. (For h and c crystals, an extrinsic fault arises 
through the insertion of a close-packed layer.) Alterna- 
tive treatments for extrinsic faults in h crystals and for 
deformation and extrinsic faults in c crystals have been 
given by Holloway (1969), Warren & Warekois (1955) 
and Warren (1963) respectively. The work has been re- 
viewed by Warren (1959) and Wagner (1966). 

crystals has been considered by Jagodzinski (1949b) for 
two types of growth faults and by Gevers (1954) and 
Lele, Prasad & Anantharaman (1969) for deformation 
faults. Prasad & Lele (1971) have given a comprehen- 
sive treatment for a total of nine types of fault (in- 
cluding the above three types). 

There are three close-packed crystal structures with a 
range of influence equal to 4, namely hcc, hhc (sam- 
arium type) and hhcc structures. Gevers (1954) has 
given a general treatment for crystals of these three 
types containing growth faults as also for one type of 
deformation fault in hcc crystals. The object of the 
present paper is to complement the work on hcc crys- 
tals by carrying out the calculations to a stage where 
the fault probabilities are directly related to the experi- 
mentally observable diffraction effects. Further, unlike 
Gevers, we distinguish between deformation faults 
occurring between an hh, hc and cc pair of layers as 
they lead to configurations which are not equivalent 
energetically. 

The hcc structure can be considered as a layer struc- 
ture produced by the regular stacking of close-packed 
layers in the sequence ABCACB, A where the letters A, 
B and C denote the three possible positions of the close- 
packed layers and the comma marks the completion of 
the repeat period (unit cell). The geometrical structure 
factors for different H,K,L are given in Table 1. A 

X-ray diffraction from faulted close-packed crystals different notation (Nabarro, 1967) for the growth and 
with a range of influence equal to 3, i.e., hc (d.h.c.p.)_~ [deformation faults, virtual processes for their forma- 


